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ABSTRACT 

 

As a companion to Part I, which discussed the calibration of probabilistic 2-meter 

temperature forecasts using large training data sets, this Part II discusses the calibration 

of probabilistic forecasts of 12-hourly precipitation amounts.  Again, large ensemble 

reforecast data sets from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the Global Forecast System (GFS) were used for testing and calibration.  

North American Regional Reanalysis (NARR) 12-hourly precipitation analysis data were 

used for verification and training.  Logistic regression was used to perform the 

calibration, using power-transformed ensemble means and spreads as predictors.  

Forecasts were produced and validated for every NARR grid point in the conterminous 

US (CONUS).  Training sample sizes were increased by including data from 10 nearby 

grid points with similar analyzed climatologies.   “Raw” probabilistic forecasts from each 

system were considered, where probabilities were set according to ensemble relative 

frequency.  Calibrated forecasts were also considered based on three amounts of training 

data, the last 30 days of forecasts (available for 2005 only), weekly reforecasts from 

1982-2001, and daily reforecasts from 1979-2003 (GFS only).   

 
The main results found here were that:  (1) raw probabilistic forecasts from the ensemble 

prediction systems’ relative frequency possessed little or negative skill when skill was 

computed with a version of the Brier Skill Score (BSS) that does not award skill solely 

due to differences in climatological probabilities among samples.  ECMWF raw forecasts 

had larger skills than GFS raw forecasts. (2) After calibration with weekly reforecasts, 

ECMWF forecasts were much improved in reliability and were moderately skillful.  
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Similarly, GFS calibrated forecasts were much more reliable, though somewhat less 

skillful.  Nonetheless, GFS calibrated forecasts were much more skillful than ECMWF 

raw forecasts. (3) The last 30 days of training data produced calibrated forecasts of light-

precipitation events that were nearly as skillful as those with weekly reforecast data.  

However, for higher precipitation thresholds, calibrated forecasts using the weekly 

reforecast data sets were much more skillful, indicating the importance of large sample 

size for the calibration of unusual and rare events. (4) Training with daily GFS reforecast 

data provided calibrated forecasts with skill similar to that from the weekly data.  
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1.  Introduction 

 
 This paper continues to examine how reforecasts, data sets of prior forecasts from 

the same model run operationally, can be used to improve the calibration of probabilistic 

ensemble weather forecasts.  Calibration here refers to the statistical adjustment of 

numerical forecasts to produce probabilistic forecasts that are as sharp as possible while 

remaining reliable (Wilks 2006, pp. 258-259, Gneiting et al. 2007).    

 
Hagedorn et al. 2007 (hereafter “Part I”) considered the problem of calibrating 2-

m temperature forecasts from a newly available reforecast data set from the European 

Centre for Medium-Range Weather Forecasts (ECMWF).  Part I showed that dramatic 

improvements in probabilistic 2-m temperature forecast skill were possible even when 

calibrating the version of the ECMWF forecast model operational in the autumn of 2005, 

which was a much more high-resolution, skillful, and less biased forecast model than the 

1998 Global Forecasting System (GFS) model used in previous reforecast experiments 

(Hamill et al. 2004, 2006, Hamill and Whitaker 2006, 2007, Whitaker et al. 2006, Wilks 

and Hamill 2007).  However, the long, 20-year ECMWF reforecast training data set was 

not needed for the successful calibration of short-term temperature forecasts. Calibration 

based on a relatively short time series of the most recent forecasts and observations 

produced forecasts of comparable skill, though longer-lead forecasts were better 

calibrated with the 20-year reforecasts’ increased training sample size.   

 
Large improvements from calibration using a short training data set is a 

particularly encouraging result, for an extensive set of reforecasts is computationally 

expensive to produce. The significant computational expense of a long reforecast data 
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must be justified by very large improvements in forecast skill from its usage, 

improvements larger than would be obtained by, say, increasing the model resolution of 

improving the realism of radiation calculations.  Arguably, such gains were not realized 

with short-range temperature forecasts. 

 
 Unfortunately, short training data sets may not be as useful for precipitation 

forecast calibration as they were for the short-term temperature forecast calibration 

(Hamill et al. 2006, Fig. 7).  Precipitation accumulated over short periods tends to have a 

positively skewed distribution, with many zero events, fewer light-precipitation events, 

and very few heavy precipitation events.   Should today’s mean forecast indicate heavy 

rainfall, a small training sample of prior forecasts may be dominated by the zero-rainfall 

or light-rainfall forecast events and thus be unhelpful.  A longer time series of old 

forecasts and observations may be needed to provide enough similar events.  

 
 This article, then, reconsiders precipitation forecast calibration, this time 

including results from the new ECMWF reforecast data set. Some important questions to 

be answered include: (1) are large improvements in precipitation forecast skill and 

reliability possible through a reforecast-based calibration of ECMWF ensemble forecasts, 

as they were with the older GFS model forecasts, even though the ECMWF model is 

more skillful and less biased? (2) How much additional benefit can be obtained from 

calibrating with a large reforecast data set compared to calibrating with a brief time series 

of forecasts and observations from the recent past?  (3) Can training sample size be 

enlarged artificially by agglomerating data from locations with similar characteristics, 

thereby decreasing the need for an even larger set of reforecasts?  
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 Below, section 2 will review the data sets used in this experiment.  Section 3 

describes the calibration methodology and the methods for evaluating forecast skill.  

Section 4 provides results, and section 5 provides conclusions. 

 
2.  Forecast and observational data sets used. 

 
a. Precipitation analyses. 

 
 The reference for verification and training was the North American Regional 

Reanalysis (NARR) precipitation analysis (Mesinger et al. 2006), archived on a ~32-km 

Lambert-conformal grid covering North America and adjacent coastal waters. Only data 

over the conterminous US (CONUS) was used, and precipitation was accumulated over 

12-hourly periods ending at 0000 UTC and 1200 UTC.  Precipitation analyses from this 

data set were derived from an objective analysis of 24-hourly rain-gauge data that was 

then temporally disaggregated into 3-hourly analyses based on nearby hourly rain-gage 

data.  Orographic detail was inferred following using techniques described in Daly et al. 

(1994).  The NARR precipitation analysis can be expected to be less accurate in regions 

where rain-gauge data was sparse (say, the intermountain western US).  Other 

deficiencies of this precipitation analysis data set were noted in West et al. (2007). 

 
b. ECMWF forecast data. 

 
 The forecast data used here was the same as in Part I, except 12-hourly 

accumulated precipitation forecast data valid at 0000 UTC and 1200 UTC was used 

instead of 2-m temperature forecasts.  The ECMWF reforecast data set consisted of a 15-
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member ensemble reforecast computed once weekly from 0000 UTC initial conditions 

for the initial dates of 1 September to 1 December.  The years covered in the reforecast 

data set were from 1982 to 2001, and the initial conditions were provided by an ECMWF 

40-year reanalysis, ERA-40 (Uppala et al. 2005).   The model cycle 29r2 was used, which 

was a spectral model with triangular truncation at wavenumber 255 (T255) and 40 

vertical levels using a sigma coordinate system.  Each member forecast was run to 10 

days lead, though because of the comparatively rapid decay of precipitation forecast skill, 

only forecasts to 6 days lead will be considered here.  One-degree gridded forecast data 

were bilinearly interpolated to the NARR grid at points within the CONUS. 

 
 In addition, the operational ECMWF 0000 UTC forecasts were extracted in 2005 

for every day from 1 July to 1 December. These forecasts used the same model version as  

was used to produce the reforecasts, though the initial analyses were provided by the 

operational 4-dimensional variational analysis system (Mahfouf and Rabier 2000) rather 

than the 3-dimensional variational analysis system used in ERA-40.  The 2005 daily data 

permits experiments comparing calibration using a short training data set of prior 

forecasts with calibration using the reforecasts. 

 
c. GFS forecast data. 

 
 The GFS reforecast data set, more completely described in Hamill et al. (2006), 

was also utilized here.  The underlying forecast model was a T62, 28 sigma-level, circa-

1998 version of the GFS.   Fifteen-member forecasts are available to 15 days lead for 

every day from 1979 to current.  Forecasts were started from 0000 UTC initial 

conditions, and forecast information was archived on a 2.5-degree global grid. GFS 
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forecast accumulated precipitation was also bi-linearly interpolated to the NARR grid at 

12-hourly intervals.  For most of the experiments to be described here, the GFS 

reforecasts were extracted from 1982-2001 at the weekly dates of the ECMWF 

reforecast, to facilitate comparison.  Daily GFS forecast data was also extracted for 1 July 

to 1 December 2005. 

 
3.  Forecast calibration and validation methodologies. 

 
a. Calibration with logistic regression 

 
  Logistic regression analysis (e.g., Agresti 2002, Chapter 5) will be used as the 

general method of forecast calibration.   The non-homogeneous Gaussian regression 

technique used in Part I was not useful for precipitation, where forecast distributions are 

usually non-Guassian.  Given an unknown observed amount O (the predictand), the 

precipitation threshold T, and model-forecast predictors x1, … , xp , logistic regression 

analysis determines the parameters β0, … , βp to fit a predictive equation of the form 

 

 
 

P(O > T ) = 1.0 !
1.0

1.0 + exp "0 + "1x1 +!+ " pxp( )
 .   (1) 

There are many other possible precipitation forecast calibration methodologies; see 

Hamill and Whitaker (2006) for a comparison of logistic regression with analog 

techniques using GFS reforecasts, or Sloughter et al. (2007) for a Bayesian model 

averaging approach.  Here, logistic regression was chosen because: (1) it was a standard 

method, with readily understood characteristics and algorithms available from off-the-

shelf software, (2) it permitted unusual predictors and variable sample weights to be 
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incorporated readily, and (3) relative to methods like the analog technique, the logistic 

regression was expected to perform better when sample size was relatively limited.  This 

may be helpful here since the ECMWF reforecast data consisted of once-weekly 

reforecasts, more infrequent than the daily GFS reforecasts used in prior studies.   One 

disadvantage of logistic regression is that output provides probabilities for one threshold, 

not a full probability density function. 

 
 Much experimentation was performed to determine, given an ensemble of 

precipitation forecasts, what would be the ideal predictors in the logistic regression 

formulation. Since we would prefer to focus in this paper on differences between the 

ECMWF and GFS forecasts and the effects of training sample size, we will not document 

the results testing different potential predictors.  These indicated (not shown) that small 

improvements were possible with a careful choice of predictors, but model and sample 

size were bigger factors in determining forecast skill.  

 
 The two chosen predictors to be used in all subsequent regression analyses are: 

(1) the ensemble mean, raised to the quarter power, and (2) the ensemble spread, raised to 

the quarter power, where the spread denotes the standard deviation of the ensemble about 

its mean.  Letting x f denote the forecast mean and ! f denote the spread, the regression 

takes the form 

 

 P(O > T ) = 1.0 !
1.0

1.0 + exp "0 + "1 x
f( )
0.25

+ "2 # f( )
0.25

{ }
.   (2) 
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Previously, Sloughter et al. (2007) used a 1/3-power transformation in their precipitation 

calibration, and Hamill and Whitaker (2006) used a ½ power transformation in the 

logistic regression of daily precipitation forecasts.   For this application to 12-hourly 

accumulated precipitation, the reliability of high-probability forecasts was improved 

slightly with the ¼ power transformation compared to ½ or no power transformation.    

 
 The logistic regression algorithm used in this study allowed for training samples 

to be weighted individually.  Through experimentation, we determined that an increase 

weighting the samples with higher forecast mean precipitation improved the reliability of 

the forecasts, especially situations where high probabilities were issued.  Consequently, 

we chose a weight w for a particular sample based on the relationship of its ensemble-

mean forecast to the precipitation threshold in question: 

 

 w =
1.0 if x

f
+ 0.01 > T

0.1+ 0.9 ! exp "1.0 ! log10 x
f
+ 0.01( ) " log10 T( )( ) if x

f
+ 0.01 # T

$
%
&

'&

(
)
&

*&
.      (3) 

 
This produced a weighting function of the form shown in Fig. 1, with higher weights for 

samples with larger forecast precipitation amounts.  The form of this weight is somewhat 

arbitrary; the important aspect was simply providing more weight to the heavier forecast 

precipitation events. 

 
For the temperature forecast calibration in Part I, acceptable results were 

sometimes produced even with limited training data.  For the precipitation forecasts 

considered here, however, even with logistic regression, a robust training data set will be 

shown to be crucial; heavy or even moderate precipitation may be a rare event at many 
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locations, and a modest number of samples with other heavy precipitation events may be 

needed to generate trustworthy regression coefficients. 

 
Figure 2 illustrates the potential benefits of an especially large training data set.  

Here, a logistic regression analysis was run using eqs. (2) and (3).  For a given forecast 

lead and a given grid point, the reforecast data at this lead and at this grid point for all 

other years and all dates were utilized as training data, 19 years × 14 dates = 266 samples.  

The precipitation analysis is shown in Fig. 2a.  Despite the comparatively smooth 

ensemble-mean forecast (Fig. 2b), the subsequent forecast of probabilities from the 

logistic regression analysis (Fig. 2c) had more spatial structure than was warranted.  

Notice, for example, the patch of near-zero probabilities in western Nebraska.  After 

enlarging the training sample size by adding data from locations that had similar 

observed climatologies and repeating the logistic regression analysis (Fig. 2d, now using 

11 times more samples), the probability forecasts had a much smoother spatial structure. 

 
A different grid point should provide a suitable “analog” and its data could be 

used to enlarge the training sample size if that grid point had: (1) a similar observed (O) 

climatological cumulative density function (CDF), (2) a similar forecast (F) cumulative 

density function, (3) a similar predictive relationship between forecast and observed, e.g., 

similar F-O correlations, and (4) independent errors from the original grid point.   

Unfortunately, with ECMWF reforecasts available only once per week, and given the 

non-Gaussian, intermittent nature of precipitation, finding analog locations including 

criteria (2) and (3) above was difficult.  The forecast CDFs were noisy given the limited 

sample size, and F-O relationships were sometimes misdiagnosed from a few 
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unrepresentative cases.  However, it was possible to use the long record from the NARR 

to determine supplemental locations that at least had similar observed climatologies and 

that were distant enough from each other to have quasi-independent forecast errors.  For 

all of the regression analysis results presented hereafter from the ECMWF reforecasts 

(and GFS reforecasts, unless otherwise noted), the training data for a grid point was 

supplemented by training data from 10 other supplemental “analog” grid points with 

similar observed climatologies. 

 
The specific procedure for finding 10 analog grid points was as follows.  First, the 

climatological probability of 24-h accumulated precipitation exceeding 1, 2.5, 5, 10, 25, 

and 50 mm was calculated at each NARR grid point for each day of the year.  The 

climatological probabilities were based on NARR data from 1979-2003 and +/- 30 days 

around the date of interest.  For a given grid point i, only other grid points within a radius 

of 25 grid points (~800 km) were considered as potential analogs.  The Dn statistic (Wilks 

2006, eq. 5.15) was calculated at all grid points within this radius, with the test statistic 

for a grid point j within the radius defined by  

 
D
n
j( ) = max

T
F
j
(T ) ! F

i
(T )  .      (4) 

 
Here, F(T) denotes the CDF value at a threshold T, and the six precipitation thresholds 

noted above were considered.   We then searched for other grid points that had small test 

statistics.  All grid points less than 3.5 grid points distance from the grid point of interest 

were excluded from consideration, under the assumption that nearby grid points were 

likely to provide non-independent data.   Next, grid points were ordered from lowest to 

highest test statistics.  The location with the lowest test statistic becomes the first analog 
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grid point.  All grid points less than 3.5 grid points distant from this analog location were 

then also excluded from further consideration.  The process was then repeated, finding 

the grid point with the next-lowest test statistic, excluding grid points around it, and so on 

until the locations for 10 analogs were determined.  Figure 3 shows sample analog 

locations for several grid points around the CONUS.  

 
b. Experiments performed. 

 
 Probabilistic forecasts were evaluated from five sources.  They were: (1) 

“ECMWF raw” forecasts; probabilities were set directly from the relative frequency in 

the ensemble, e.g., if 5 of 15 forecasts indicate greater than 5 mm, P(O > 5 mm) = 1/3,  

(2) “GFS raw” forecasts, (3) “ECMWF calibrated” logistic regression forecasts, based on 

the logistic regression method described above,  (4) “GFS calibrated” forecasts, and (5) 

“Multi-model” calibrated forecasts.  Here, the predictors for the multi-model forecasts 

were weighted linear combinations of the ECMWF and GFS forecasts.  Given the greater 

skill of the ECMWF forecasts, the weights were arbitrarily set to 0.75 for ECMWF and 

0.25 for the GFS.   A more sophisticated weighting such as that performed in Part I is 

conceivable, but was not attempted here.  Partly this was because the weighting in Part I 

assumed that forecast errors were normally distributed, an assumption that cannot be 

made here. 

 
 Calibrated forecasts based on three amounts of training data were considered.  

The primary results were based on the 20-year, “weekly” reforecast data sets, cross 

validated, e.g., 1982 forecasts were calibrated with 1983-2001 forecasts and observations.   

Unlike the temperature calibration in Part I, where forecast bias was assumed to be 
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seasonal and the training data was limited to the few dates surrounding the week of 

interest, for precipitation calibration the full training data was lumped together.  For 

example, when calibrating the 1 September forecasts, the training data included all 

reforecast dates available, from 1 September – 1 December. This was done under the 

assumption that an increased training sample size was more beneficial for precipitation 

forecasts than the possible degradation from not accounting for seasonal changes in 

precipitation forecast bias between September and December.  To facilitate a direct 

comparison of GFS and ECMWF forecasts, the GFS reforecast data was sub-sampled to 

20-year, September-December weekly data from 1982-2001. 

 
 The second amount of training data was “30 days.”  That is, forecasts from the 

most recently available 30 days of forecasts were used for training.  Note, however, that 

to be consistent with operational practice where training data can be utilized only when 

observations become available, longer-lead forecasts used older training data than 

shorter-lead forecasts.  For example, a 6-day lead forecast used training data that was 

actually data from day -35 to day -6, whereas a 1-day lead forecast used training data 

from day -30 to day -1.  Every-day samples of GFS and ECMWF forecasts from the same 

model version as the reforecasts were only available in 2005, so the comparison of 

calibration from weekly and 30-day training data sets will be limited to fall 2005 data.  

 
The last training data set size, available only for GFS forecasts, was the “full” 

reforecast.  Here, rather than a 20-year weekly sample between 1 September and 1 

December, a 25-year (1979-2003), daily sample between these dates was utilized for 

training data.  
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c. Forecast validation techniques. 

 
(1) RELIABILITY DIAGRAMS.   

 
Some enhancements to the standard reliability diagram (e.g., Wilks 2006, Chapter 

7) were utilized here. Because high probability forecasts of heavy precipitation amounts 

were issued very infrequently, inset histograms for the frequency of usage were plotted 

on a log-10 scale, providing a better visualization of the distribution in the tails.  Also, 

5% and 95% confidence intervals were placed on the reliability curves, with the 

confidence intervals estimated from a 1000-member block bootstrap sample following 

Efron and Tibshirani (1993), Hamill (1999), and similar to Bröcker and Smith (2007).  

Each case day was considered a separate block of fully independent data in the bootstrap, 

which was justifiable with samples one week apart.  Another modification to the standard 

reliability diagram was the inclusion of a frequency of usage of the climatological 

probabilities for all forecast samples, plotted as a solid line over top of the forecast 

frequency of usage. 

 
 (2) BRIER SKILL SCORE 

 
 Following Hamill and Juras (2006), the standard method for computing Brier 

Skill Score (BSS) was adapted so that positive skill was not inappropriately attributed to 

the forecasts simply due to variations in climatological event probabilities among the 

samples.  The modification to the standard method of BSS computation was relatively 

straightforward: the overall forecast sample was divided into subgroups where the 

climatological event probability was approximately homogeneous; the BSS was 
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calculated for each subgroup, and the final BSS was calculated as a weighted average of 

the subgroups’ BSS.  For precipitation, there were NC =10 subgroups, each with a more 

narrow range of climatological uncertainty in each subgroup. Let BS
f

s( )  denote the 

average Brier score (Wilks 2006, Chapter 7) of forecasts populating the sth subgroup, let 

BS
c

s( )  denote the average Brier score of the climatological reference forecast in this 

subgroup, and let u(s) be the fraction of samples from the sth subgroup.  Then the overall 

BSS was calculated as  

 

BSS = u(s) 1!
BS

f

s( )

BS
c

s( )

"

#
$

%

&
'

s=1

NC

(  .      (5) 

 
For more details, please see Hamill and Whitaker (2007).  Also, as with the reliability 

curves, a 1000-member block bootstrap procedure was used to quantify the uncertainty in 

the skill score estimates.  Note that with these daily samples, at short leads the forecast 

errors can be considered independent from one day to the next (Hamill 1999, Table 3).  

However, we have not verified independence for longer-lead forecasts, so the block 

bootstrap may slightly underestimate the width of the confidence intervals. 

 
4.  Results 

 
a. Forecast reliability with weekly training data  

 
Figure 4 provides 1, 3, and 5-day reliability diagrams at the 5-mm threshold for 

ECMWF’s raw forecasts, validated over all forecasts (20 years × 14 weekly reforecasts 

for all grid points in the CONUS).  Figure 5 provides the same, but for GFS raw forecasts 
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sub-sampled to the dates of the ECMWF reforecasts.  ECMWF raw forecasts were 

slightly more reliable than GFS raw forecasts, though both were notable more for the lack 

of reliability than its presence.  Inset BSSes indicated that the forecasts were less skillful 

than the reference climatologies. Raw forecast skill was somewhat larger for lighter 

thresholds. The reasons why longer-lead forecasts have reduced negative skill will be 

discussed later. 

 
The unreliability and in particular the low skill were worse than has been reported 

in some comparable studies (e.g., Eckel and Walters 1998, Mullen and Buizza 2001).  

This was due to several factors.  First, the validation in this study was performed over a 

shorter temporal period (here, 12-h accumulations) and on a comparatively finer-

resolution grid, 32 km.   Previously, it was shown (e.g, Islam et al. 1993, Gallus 2001) 

that a finer discretization of the forecast in time and space decreased the apparent 

predictability or skill of a forecast. Somewhat improved reliability and skill were evident 

when the verification data were instead accumulated at the forecasts’ 1-degree grid-box 

scale.  Also, the low skill was partly due to the use of eq. (5), which was much more 

stringent in assigning skill than the conventional method of calculation of the BSS 

(Hamill and Juras 2006).   Commonly, a reliability curve that was halfway between 

perfect reliability and flat such as Fig. 4a would be assigned near zero skill (see the 

interpretation of the related “attributes diagram,” Hsu and Murphy 1986, Wilks 2006, p. 

292).  However, implicit in the definition of skill in such diagrams is that the associated 

reference climatological probability is the same for all forecast samples.  When a 

reliability diagram is in fact composed of forecast samples that are associated with a 

mixture of reference climatological probabilities, subzero skill is possible with such a 
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curve.1  With these reliability diagrams, forecast samples were taken from grid points 

across the CONUS, associated with a distribution of climatological probabilities (this 

distribution was plotted as a horizontal bar over top of the forecast distribution in the 

reliability diagrams).  

 
Figures 6 and 7 shows the reliability diagram for calibrated ECMWF and GFS 

forecasts, respectively.  There was a dramatic improvement in reliability at all leads 

relative to the raw forecasts, though sharpness was greatly lessened; high-probability 

forecasts in particular were not issued nearly as frequently.  The BSS was improved 

dramatically at all leads.  ECMWF calibrated forecasts were consistently higher in skill 

than GFS calibrated forecasts.  However, in some instances such as for the day-1 

forecasts, GFS forecast appeared to be slightly more reliable than ECMWF forecasts.  

However, by comparing each figure’s inset frequency of usage histograms, it was 

apparent that the ECMWF calibrated forecasts were somewhat sharper, issuing higher 

probability forecasts and thus deviating from the climatological distribution more often.2  

                                                
1 In fact, one could conceive of degenerate case of a “perfect” reliability diagram but with 
a 0.0 BSS using eq. (5).  Suppose half the samples populating the diagram had a forecast 
probability of 1.0 and half had 0.0, and each forecast was perfectly sharp and perfectly 
reliable.  But suppose all the sample data for the 1.0 forecast probability had a 
climatological event probability of 1.0 as well, and all the data for the 0.0 probability had 
a climatological event probability of 0.0. Then the forecast, while perfect, is no better 
than climatology so the BSS of eq. (5) would assign these forecasts zero skill (Hamill and 
Juras 2006).   This highlights a difficulty with such skill metrics: when climatology is a 
very good forecast on most occasions (for example, heavy rainfall in the desert: the 
climatological forecast of low probability is a good one nearly all the time) then 
establishing forecast skill relative to the climatology is especially difficult.   
2 A common technique for the analysis of sources of skill is a decomposition of the 
forecast Brier Score into components describing the reliability, resolution, and 
uncertainty (e.g., Wilks 2006, p. 284).  Implicit in this decomposition, however, is the 
assumption that all samples have the same underlying climatological event probability, an 
assumption violated here. 
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When the calibrated ECMWF forecasts issued high-probability forecasts, the event 

typically occurred, as judged from the reliability curves.  Consequently, ECMWF 

forecasts had lower Brier Scores (and higher BSSes).  Note also that the GFS calibrated 

day-5 forecast had a frequency of usage distribution very similar to that of climatology, 

reflected in a BSS near zero.  The calibrated GFS forecasts, finding little forecast signal 

with this model, regressed to the local climatological probabilities. 

 
Interestingly, multi-model calibrated forecasts (Fig. 8) did not produce any 

noticeable improvement in skill relative to the ECMWF calibrated forecasts, unlike the 

temperature results in Part I.   The differences between the multi-model and ECMWF 

skill consistently lay within the 5th and 95th percentiles of the bootstrapped skill score 

distribution (shown in the next section), indicating that the differences were not 

statistically significant.  It is possible that a more careful combination of ECMWF and 

GFS forecast data may have slightly improved the skill of calibrated multi-model 

forecasts. 

 
b. Brier skill scores with weekly training data 

 
 Figure 9 shows BSSes as a function of forecast lead and threshold for raw and 

calibrated forecasts.  Calibrated multi-model forecasts were not plotted, but differences at 

all leads were statistically insignificant relative to ECMWF calibrated forecasts.  Several 

interesting characteristics of the forecast can be noted.  First, both ECMWF and GFS raw 

forecasts oscillated in forecast skill, exhibiting higher skill for 0000 – 1200 UTC 

forecasts and lower skill for 1200 – 0000 UTC forecasts.  Figure 10 demonstrates why 

this occurs.  Here, the ECMWF forecast characteristics changed diurnally, tending to 



 20 

over-forecast significant rainfall events during 1200 – 0000 UTC.  This over-forecast bias 

was much less pronounced at 0000-1200 UTC.  GFS forecasts had an even more 

pronounced daytime over-forecast bias. 

 
 Several other characteristics of the BSSes for the raw forecasts can be noted in 

Fig. 9.  Especially at the higher thresholds, forecast skill actually was negative at early 

leads and increased somewhat with forecast lead, a counter-intuitive result.  This was due 

primarily to the lack of spread (i.e., greater sharpness) in shorter-lead ensemble forecasts 

and the larger spread in longer-lead forecasts, as shown in the inset frequency of usage 

histograms from Figs. 4 and 5.  The BSS heavily penalized these unrealistically sharp 

forecasts at the early leads, especially using the new method of calculation (eq. 5). 

 
 The characteristics of greatest interest in Fig. 9 are the skill differences between 

ECMWF and GFS forecasts and the amount of skill improvement resulting from forecast 

calibration.  As with temperature in Part I, ECMWF raw forecasts were more skillful than 

GFS raw forecasts, but skill was relative here; both were uniformly unskillful at the 10-

mm threshold.   ECMWF calibrated forecasts were significantly more skillful than GFS 

calibrated forecasts, judging from the very small bootstrap confidence intervals.  

 
Positive skill was noted in both ECMWF and GFS calibrated forecasts at all leads, 

with a large reduction in the amplitude of the diurnal fluctuations in forecast skill relative 

to the raw forecasts.  These forecasts were much more skillful than the raw forecasts at 

all leads.  Comparing the skill at 1 mm, a 3- to 3.5-day ECMWF calibrated forecast was 

as skillful as a 1.5-day raw forecast, an approximately 2-day increase in forecast lead.  

Similar comparisons at other thresholds and forecast leads provided even more optimistic 
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estimates of the skill improvement from calibration.  A major conclusion from this study, 

then, is that the benefits of statistical calibration demonstrated previously with the GFS 

precipitation reforecasts (Hamill et al. 2006, Hamill and Whitaker 2006) are still evident 

with the much-improved ECMWF model.  Forecast calibration still dramatically 

improved the forecasts from a state-of-the-art forecast model from 2005. 

 
c. Comparison of skill using full, weekly, and 30-day training data 

 
 With the temperature forecasts in Part I, a 30-day training data set provided a skill 

increase at short leads that was nearly equivalent to the skill increase when using the 20-

year, weekly reforecast data sets.  We return to consider whether short training data sets 

are similarly adequate for precipitation forecast calibration.  Forecast skill was evaluated 

for calibrated forecasts every day between 1 September and 1 December 2005.  Skill was 

evaluated using three amounts of training data described in section 3b, the “30-day” 

training data (the last available 30 days), “weekly” (the once-weekly, 20-year reforecast 

data set), and “full” (for the GFS, 25 years of once-daily September-October-November 

reforecasts and observations).  Weekly and 30-day training data sets used the 

compositing technique whereby training data was supplemented from 10 other grid points 

with similar analyzed climatologies. 

 
Figure 11 shows the positive impact of the weekly training data sets.   While the 

degradation of skill was not particularly large at the 1-mm threshold, at 5 mm and 

especially 10 mm, the degradation of forecast skill with the 30-day training data set 

relative to the weekly data set was quite large.  At 10 mm, the improvement from using 

weekly ECMWF reforecasts compared to 30-day was at least 1.5 days of increased 
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forecast lead time; a 2-day weekly calibrated ECMWF forecast was as skillful as a 0.5-

day 30-day calibrated ECMWF forecast. 

 
Interestingly, GFS forecast calibration did not appear to improve in skill when 

daily samples were used (without calibrating using the analog locations) relative to the 

GFS weekly using the analog locations. This suggests that for this application, daily 

reforecasts are not necessary. 

 
5.  Conclusions. 
 
 

This article considered the calibration of probabilistic short-term precipitation 

forecasts and how much training data was needed from a stable model and data 

assimilation system to produce an effective calibration.  Two sources of forecasts were 

considered, ensemble forecasts from a T255, 2005 version of ECMWF’s ensemble 

prediction system, and GFS forecast from a T62, 1998 version.   ECMWF reforecasts 

were available once every week from 1982 to 2001, 1 September to 1 December.  Daily 

forecast data was also available in the fall of 2005.  GFS reforecast data was available 

every day from 1979 to current and could be subsampled to the dates of the ECMWF 

reforecasts to facilitate comparison.   12-hourly NARR data was used for training and 

validation. 

 
Precipitation forecast calibration, this article has shown, was very different in 

character than temperature forecast calibration.  For temperature calibration in Part I, a 

small training data set was adequate for calibration of short-lead forecasts, though longer-

lead forecasts were better calibrated with more training data.  With precipitation, 
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calibration using a small, 30-day training data set improved forecast skill much less than 

calibration using the 20-year, weekly reforecasts.  The difference was greater at higher 

precipitation thresholds; i.e., the rarer the event, the more training data was needed.  This 

result confirms a similar result with GFS reforecasts (Hamill et al. 2006, Fig. 7). 

 
Another important result from this study is that calibration with reforecasts 

substantially benefited even a higher-resolution, improved forecast model.  Arguably, the 

beneficial results obtained from the reforecast-based calibration of GFS precipitation 

forecasts (Hamill et al. 2006, Hamill and Whitaker 2007) might be attributable to the low 

baseline set by the now aged 1998 GFS.   The 2005 ECMWF system, arguably, is still 

representative of circa 2007-2008 systems for many other operational forecast centers, 

given ECMWF’s substantial lead in probabilistic forecast skill (Buizza et al. 2005).   

Hence, along with Part I, these articles have shown the usefulness of large reforecast data 

sets, in particular for the calibration of forecasts of heavy precipitation and longer-lead 

temperature forecasts.  

 
Taken together, Parts I and II indicate that large improvements in forecast skill 

and reliability are possible through the use of reforecasts, even with a modernized 

forecast model.  For heavy precipitation or long-lead temperature forecasts, the extra 

training data was especially valuable.  What these articles have not discussed, however, is 

just what the optimal reforecast configuration should be.  How many members should be 

in the reforecast ensemble?  How many years?  Should a reforecast be performed every 

day, every third day, or every week?  Hamill et al. (2004), reinforced by the positive 

results from weekly samples here, found that for these particular applications, weekly 
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data over a period of decades was adequate.  For other applications such as hydrologic 

flood forecasting, however, daily samples may still be preferable.  Our unpublished 

results have suggested that much of the benefit can be obtained from a 5-member 

reforecast.  We hope to examine these issues in future work. 
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FIGURE CAPTIONS 

 

Figure 1:  Weighting function for logistic regression at the 10-mm threshold. 

 
Figure 2:  (a) NARR precipitation analysis of 12-h accumulated precipitation for the 12-

hourly period ending 1200 UTC 17 November 1991.  (b) 0-12 hour ECMWF ensemble-

mean forecast of accumulated precipitation. (c) Probability of greater than 10 mm 

precipitation in this period using a logistic regression where each grid point’s data is 

treated independently. (d) As in (c), but where the logistic regression training data 

includes forecasts and observations from 10 other locations that have similar observed 

precipitation climatologies for this day of the year. 

 
Figure 3:  Selected analog locations for purposes of increasing training sample size in the 

logistic regression analysis.  Grid points are sought that have a similar climatology to a 

location of interest.  The locations of interest are denoted by the large symbols, and 10 

other grid points that have similar climatologies are denoted by the corresponding smaller 

symbols.  When training logistic regression at the grid point with a large symbol, 

observations and forecasts are used both at this location and at the locations of the small 

symbols.  

 
Figure 4:  Reliability of 5-mm ECMWF raw forecasts at 1, 3, and 5-day leads.  

Overplotted confidence intervals provide 5th and 95th percentiles of determined through 

block bootstrap resampling techniques.  Inset histogram denotes frequency of forecast 

usage of each probability bin.  Solid lines overplotted on histogram denote the 

climatological frequency of usage of each probability bin. 
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Figure 5:  As in Fig. 4, but for GFS raw forecasts. 

 
Figure 6:  As in Fig. 4, but for calibrated ECMWF forecasts. 

 
Figure 7:  As in Fig. 4, but for calibrated GFS forecasts. 

 
Figure 8:  As in Fig. 4, but for calibrated multi-model forecasts. 

 
Figure 9:  Forecast Brier skill scores at (a) 1 mm, (b) 5 mm, and (c) 10-mm precipitation 

thresholds for ECMWF and GFS raw and calibrated forecasts (multi-model calibrated 

forecasts are not plotted; they were statistically indistinguishable from ECMWF 

calibrated forecasts). Overplotted confidence intervals provide 5th and 95th percentiles 

determined through block bootstrap resampling techniques.  

 
Figure 10:  Distribution of the fractional usage of precipitation amounts from the North 

American Regional Reanalysis and ECMWF raw forecasts for (a) 0 -12 hour forecasts, 

and (b) 12-24 hour forecasts. 

 
Figure 11:  BSS of daily forecasts from 1 Sep 2005 – 1 Dec 2005, for (a) 1-mm 

threshold, (b) 5-mm threshold, and (c) 10-mm threshold.  Error bars indicate the 5th and 

95th percentiles of the ECMWF weekly and GFS full resampled distribution of BSSes.  

Error bars for other forecasts were similar in magnitude. 
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Figure 1:  Weighting function for logistic regression at the 10-mm threshold. 
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Figure 2:  (a) NARR precipitation analysis of 12-h accumulated precipitation for the 12-
hourly period ending 1200 UTC 17 November 1991.  (b) 0-12 hour ECMWF ensemble-
mean forecast of accumulated precipitation. (c) Probability of greater than 10 mm 
precipitation in this period using a logistic regression where each grid point’s data is 
treated independently. (d) As in (c), but where the logistic regression training data 
includes forecasts and observations from 10 other locations that have similar observed 
precipitation climatologies for this day of the year. 
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Figure 3:  Selected analog locations for purposes of increasing training sample size in the 
logistic regression analysis.  Grid points are sought that have a similar climatology to a 
location of interest.  The locations of interest are denoted by the large symbols, and 10 
other grid points that have similar climatologies are denoted by the corresponding smaller 
symbols.  When training logistic regression at the grid point with a large symbol, 
observations and forecasts are used both at this location and at the locations of the small 
symbols.  
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Figure 4:  Reliability of 5-mm ECMWF raw forecasts at 1, 3, and 5-day leads.  
Overplotted confidence intervals provide 5th and 95th percentiles of determined through 
block bootstrap resampling techniques.  Inset histogram denotes frequency of forecast 
usage of each probability bin.  Solid lines overplotted on histogram denote the 
climatological frequency of usage of each probability bin. 
 
 

 
 
Figure 5:  As in Fig. 4, but for GFS raw forecasts.  
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Figure 6:  As in Fig. 4, but for calibrated ECMWF forecasts. 
 
 

 
 
Figure 7:  As in Fig. 4, but for calibrated GFS forecasts. 
 
 

 
 
Figure 8:  As in Fig. 4, but for calibrated multi-model forecasts. 
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Figure 9:  Forecast Brier skill scores at (a) 1 mm, (b) 5 mm, and (c) 10-mm precipitation 
thresholds for ECMWF and GFS raw and calibrated forecasts (multi-model calibrated 
forecasts are not plotted; they were statistically indistinguishable from ECMWF 
calibrated forecasts). Overplotted confidence intervals provide 5th and 95th percentiles 
determined through block bootstrap resampling techniques.  
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Figure 10:  Distribution of the fractional usage of precipitation amounts from the North 
American Regional Reanalysis and ECMWF raw forecasts for (a) 0 -12 hour forecasts, 
and (b) 12-24 hour forecasts. 
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Figure 11:  BSS of daily forecasts from 1 Sep 2005 – 1 Dec 2005, for (a) 1-mm 
threshold, (b) 5-mm threshold, and (c) 10-mm threshold.  Error bars indicate the 5th and 
95th percentiles of the ECMWF weekly and GFS full resampled distribution of BSSes.  
Error bars for other forecasts were similar in magnitude. 


